In a national and international context of competition in artificial intelligence, SCAI brings together a strategic range of disciplines of modern artificial intelligence in a single location at the heart of Paris.

The ambition of SCAI is to contribute significantly to the excellence of interdisciplinary research and education in artificial intelligence by promoting exchanges between researchers, teachers, students and industry.

Its mission is to become the showcase of Sorbonne University’s know-how in the field of AI and to be a gateway for both academic and industrial partners. This project is supported by a dynamic community of leading researchers from Sorbonne University and its partners, all mobilized to ensure its success.

In a nutshell, SCAI’s goal is to create a large unified research and teaching center entirely devoted to AI in all its diversity, ready to meet the scientific challenges of tomorrow.

Jean Chambaz, President of Sorbonne University

scai.sorbonne-universite.fr

NEURAL NETWORKS • DECISION-MAKING • DEEP LEARNING • AUTOMATION OF TASKS • SELF-DRIVING CARS • PATTERN RECOGNITION • ARTIFICIAL EMOTION • COMPLEX PROBLEM SOLVING • NATURAL LANGUAGE PROCESSING • MACHINE LEARNING • MATHEMATICAL MODELS • DATA ANALYSIS • STATISTICAL LEARNING • MULTI-AGENT SYSTEMS • BLOCKCHAIN • GENERATIVE MODELS • ATMOSPHERIC DATA • EMBEDDED SYSTEMS • ONTOLOGIES • KNOWLEDGE ENGINEERING • CREATIVE AI • HISTORY OF AI • ETHICS

CONTACT
Director: Prof. Gérard Biau
Executive director: Dr. Xavier Fresquet
scai@sorbonne-universite.fr

100 + scientists working in the field of AI
150 + industrial partners
80 partners for research and teaching: CNRS, Inria, INSERM, MNHN, UTC, AP-HP & CEA
100 + doctoral and postdoctoral researchers
300 + students trained each year
700 m² in the heart of Paris & 5 international components in Sorbonne Abu Dhabi
20 + Master’s degrees
5 international components
100 partners
8 partnerships with research and teaching: CNRS, Inria, INSERM, MNHN, UTC, AP-HP & CEA
20 + industrial partners ranging from startups to large multinationals

© Sorbonne Université, CNRS, Inria, AP-HP, UMPC, USTL, UTC, MNHN, UTC, AP-HP & CEA
The recent development of tools to observe and numerically model our environment and the Universe have generated considerable amounts of multi-source data. This unexpected wealth of new information provides researchers and engineers with unprecedented volumes of raw data that requires a paradigm shift in methods to be properly analyzed and exploited.

The contribution of AI techniques to the sciences of climate, environment and the Universe is therefore essential to implement ambitious scientific objectives and to prepare the research of tomorrow.

Digital Humanities
AI has made striking developments in modeling complex phenomena inherent to human cultural productions (such as pictorial, textual, sonic, oral, or architectural). Indeed, digital humanities require an innovative approach to tackle large programs and datasets ranging from music to archeology. Digital humanities are fundamentally transdisciplinary by nature, at the crossroads of computer science, signal processing, mathematics, the arts, human and social sciences with numerical and digital data that may be analyzed using multiple AI techniques.

Health & Medicine
The stakes are higher than ever to preserve health and autonomy in a context of an aging population. Moreover, preserving the confidentiality of personal data and protecting costs have become essential by allowing a more predictive, preventive and participative medicine. AI can both improve the performance of the healthcare system while contributing to the development of more personalized medicines.

Climates, Environment & Universe
The recent developments in tools to observe and numerically model the environment and the Universe have generated considerable amounts of multi-source data. This unexpected wealth of new information provides researchers and engineers with unprecedented volumes of raw data that requires a paradigm shift in methods to be properly analyzed and exploited.

Mathematics, Computer Science & Robotics
Machine learning, and in particular deep learning, is transforming AI by empowering systems capable of performing complex tasks with much greater accuracy than ever before. Whether it is decision support, complex analysis, human-machine interactions or intelligent agents, modern AI innovation needs much further. The challenges in designing, analyzing and understanding disruptive algorithms based on state-of-the-art mathematics, computing and robotics are immense.